電力系統(tǒng)中無線測溫裝置的設計與應用
瀏覽次數(shù):928更新時間:2021-12-20
劉丹
江蘇安科瑞電器制造有限公司 江蘇江陰 214405
摘要:無線溫度控制系統(tǒng)的設計在很大程度上能解決傳統(tǒng)溫度監(jiān)控系統(tǒng)存在的問題。本文研究將無線接收模塊接收、遠程多點溫度采集和傳輸系統(tǒng)檢測到的多點溫度值轉移到主機顯示。該系統(tǒng)結構簡單,抗干擾性強,穩(wěn)定性好,具有一定的實用價值。
關鍵詞:無線測溫裝置;電力系統(tǒng);無線測溫;測溫傳感器;無線溫度傳感器;溫度傳感器
一、引言
電力系統(tǒng)對安全性有很高的要求,電力系統(tǒng)設備在長時間的使用過程中會老化或出現(xiàn)過熱現(xiàn)象,如果不能及時發(fā)現(xiàn)并加以解決,就可能導致嚴重的事故,須嚴格監(jiān)視電力系統(tǒng)設備的工作狀態(tài),其中對高壓開關柜觸點的溫度進行監(jiān)測是非常重要的任務。溫度可以間接反映電氣設備的運行狀態(tài),許多故障都會導致溫度異常,因此非常需要對電氣設備進行溫度監(jiān)測。而在惡劣的生產(chǎn)條件下(例如發(fā)電機局部放電)很難使用常見的測量方法進行溫度監(jiān)測,因此開發(fā)可靠且實用的多點溫度測量設備非常重要,無線技術可以用于克服現(xiàn)有有線溫度監(jiān)控系統(tǒng)的許多缺點。
現(xiàn)有的成熟但研究不足的國外發(fā)電機狀態(tài)監(jiān)測系統(tǒng)大多使用電纜接線監(jiān)測,國內大多數(shù)研究應用也使用有線監(jiān)測。無線傳感器網(wǎng)絡是基于IEEE 802.15.4技術標準和ZigBee網(wǎng)絡協(xié)議設計的無線數(shù)據(jù)傳輸網(wǎng)絡。本文主要分析發(fā)電機無線溫度監(jiān)控系統(tǒng)的配置和設計,以使更多的人可以了解設計中某些概念帶來的便利。
二、系統(tǒng)總體設計
ZigBee無線溫度控制系統(tǒng)主要由ZigBee協(xié)調器、上位機STM32F103ZE和ZigBee終端三個大型模塊組成。無線溫度測量系統(tǒng)的目的是通過ZigBee通信協(xié)議將分布在不同位置的溫度值傳輸給PC,以便PC處理信息。在ZigBee終端節(jié)點上,溫度信息通過熱電偶收集,然后通過無線LAN傳輸給ZigBee協(xié)調器,協(xié)調器接收溫度信息,然后使用模糊比例積分微分算法計算控制量溫度。處理單元收集溫度傳感器的溫度,并通過通信單元發(fā)送溫度數(shù)據(jù)。由于溫度測量節(jié)點應具有體積小、功耗低、易于安裝和在多種環(huán)境下使用的特性,因此其使用電池供電。
三、測溫節(jié)點模塊設計
測溫節(jié)點模塊原理框圖如圖1所示,處理單元采用NEC單片機,由于NEC單片機具有低功耗特性,因此通信設備采用2.4 GHz頻段NRF24L01。該芯片支持點對點數(shù)據(jù)通信,在該模式數(shù)據(jù)通信的情況下,一個接收器工作在相同的頻帶中,并且發(fā)送六個接收器,同時將節(jié)點的ID人為地添加到通信協(xié)議中,從而可以擴展更多的多點通信。
圖1 測溫節(jié)點模塊原理框圖
顯示異常溫度測量點:通常將原始的兩點接地更改為單點接地,以處理發(fā)電機的異常溫度測量點,并更改每個通道測量回路的接地方法。它建立了溫度和負荷之間的相關性分析模型,根據(jù)負荷情況預測溫度變化趨勢,并為負荷控制提供決策依據(jù)。
四、無線測溫系統(tǒng)硬件設計
4.1系統(tǒng)總體框圖
整個溫度測量系統(tǒng)電路分為下位機和上位機兩部分。下位機負責定期收集溫度數(shù)據(jù)并將其發(fā)送給上位機。主機用于將接收到的溫度數(shù)據(jù)發(fā)送到與PC連接的通信控制器,框圖如圖2所示。
圖2 上位機與下位機總體框圖
4.2溫度采集端電路設計
一個無線收發(fā)器模塊和多個溫度傳感器構成溫度收集部分,從而完成多點溫度數(shù)據(jù)的采集和無線傳輸;另一個無線收發(fā)器模塊完成溫度數(shù)據(jù)的接收,并通過RS232接口模塊上載數(shù)據(jù)。STM32提供待機、睡眠和關機三種低功耗模式,用戶可以執(zhí)行合理的系統(tǒng)優(yōu)化。該模塊使用四線SPI接口,CS引腳連接到微控制器的RC0,INT連接到微控制器的RB0,WAKE連接到微控制器的RC1,RESET連接到微控制器的RC2。溫度采集器的發(fā)射頻率為428 439 MHz,發(fā)射信號為單頻信號,不同的頻率代表不同的信號。接收到信號后,通過信號放大和濾波處理,然后轉換為可識別的電信號以獲得溫度參數(shù)。
數(shù)據(jù)采集終端位于數(shù)據(jù)采集點,由溫度傳感器、微控制器和射頻收發(fā)器組成。它通過射頻與數(shù)據(jù)接收器進行無線通信。為了在設計中減小該系統(tǒng)的尺寸,采用了片上RF系統(tǒng),并且在芯片上集成了一系列微控制器和RF收發(fā)器。
4.3無線收發(fā)電路設計
無線收發(fā)器芯片的類型很多,在設計過程中無線收發(fā)器芯片的選擇非常重要,選擇合適的無線收發(fā)器芯片可以降低開發(fā)難度,縮短開發(fā)周期并降低開發(fā)成本。無線傳感器節(jié)點和基站根據(jù)國際標準使用2.4 GHz頻率進行通信和數(shù)據(jù)傳輸。系統(tǒng)協(xié)調器使用RS232接口連接到PC,而RXD和TXD分別連接到微控制器的RX和TX引腳。協(xié)調器通過該接口將溫度數(shù)據(jù)從每個節(jié)點傳輸?shù)缴衔粰C,上位機可以通過VB調試接口讀取上傳的數(shù)據(jù),以達到監(jiān)控目的。
在傳輸模式下,從壓控振蕩器(VCO)輸出的信號直接被傳輸?shù)焦β史糯笃鳎≒A)。RF輸出由添加到DIO引腳[稱為頻移鍵控(FSK)]的數(shù)據(jù)控制。內部的T/R切換電路使天線的連接和匹配設計更加容易。PTR8000的工作電壓低,屬于低壓設備,在設計過程中就需要考慮這一點,STC89LE52微處理器用于連接設計,因此無須添加電平轉換電路,可以提高系統(tǒng)的穩(wěn)定性。下行鏈路通過CAN總線或無線連接到溫度采集器,以從連接的傳感器獲取溫度信息,根據(jù)設置的參數(shù)分析溫度信息,確定是否產(chǎn)生警告信息。上行和主站系統(tǒng)之間的通信采用RS485接口,并根據(jù)特定協(xié)議實現(xiàn)數(shù)據(jù)傳輸。
五、無線測溫系統(tǒng)軟件設計
5.1系統(tǒng)的整體軟件框圖
系統(tǒng)在編程時采用模塊化的設計思想,將系統(tǒng)的主要功能模塊編譯為獨立的功能,由主程序調用,由于熱電偶安裝在發(fā)電機側并接地,因此從模塊側的接地中移除熱電偶信號可提高測量值。該系統(tǒng)的軟件設計采用模塊化、結構化的設計方法,整個程序由測溫模塊、無線收發(fā)模塊、與PC的串行通信模塊組成。軟件系統(tǒng)的整體數(shù)據(jù)處理流程如圖3所示。整個系統(tǒng)的所有部分都用于無線數(shù)據(jù)傳輸,因此,無線數(shù)據(jù)傳輸是整個系統(tǒng)軟件設計中重要的部分。
圖3 軟件系統(tǒng)的整體數(shù)據(jù)處理流程
ZigBee協(xié)調器程序的主要功能是設置局域網(wǎng)管理終端的節(jié)點以實現(xiàn)與STM32F03ZE的通信,而M32F03ZE主機程序主要實現(xiàn)與ZigBee協(xié)調器的通信并提供熟悉的人機界面。
5.2傳感器節(jié)點程序設計
該系統(tǒng)的無線傳感器節(jié)點選擇TI的CC2430,芯片本身具有八個A/D,處理器和無線通信模塊。傳感器節(jié)點由一個小型嵌入式系統(tǒng)組成,該系統(tǒng)由傳感器模塊、處理器模塊、無線通信模塊和能源供應模塊四部分組成。數(shù)據(jù)接收模塊
在從一個獲取模塊接收數(shù)據(jù)之后或發(fā)生通信超時之后結束與模塊的數(shù)據(jù)通信,并開始向下一個數(shù)據(jù)獲取模塊發(fā)送數(shù)據(jù)請求命令。當所有數(shù)據(jù)采集模塊都與數(shù)據(jù)接收模塊匹配時,經(jīng)過一輪通信后,它會在數(shù)據(jù)采集模塊處重新啟動,以此類推。
5.3下位機與上位機軟件設計
系統(tǒng)的軟件設計包括上位機和下位機軟件設計。下位機軟件設計主要實現(xiàn)對上位機發(fā)送的命令的處理,該命令通過無線傳輸模塊發(fā)送到溫度采集模塊以選擇通道,然后發(fā)送無線接收信號,溫度參數(shù)被傳送到主機進行處理。
5.3.1下位機軟件設計
下位機的主程序實現(xiàn)系統(tǒng)的初始設置,定義PTR引腳,配置PTR并設置波特率。它從父計算機接收命令,確定父計算機選擇的信道,并根據(jù)該信道發(fā)送相應的無線電。相應的溫度采集模塊的通道地址采集溫度,然后通過無線傳輸模塊將溫度數(shù)據(jù)傳輸?shù)浇邮战邮瞻鍖⑼ㄟ^串口接收到的溫度數(shù)據(jù)傳輸?shù)缴衔粰C進行處理。
5.3.2上位機軟件設計
上位機軟件部分主要由數(shù)據(jù)編碼程序、數(shù)據(jù)解碼程序、初始化程序、數(shù)據(jù)發(fā)送/接收中斷處理程序、RS-485通信程序和上位機主程序組成。無線數(shù)據(jù)收發(fā)器中斷處理程序與下位機的相同,并且所有程序均以IARC語言完成。當通信控制器的輪詢信號點到達本機時,數(shù)據(jù)直接從存儲器中獲取并傳輸?shù)酵ㄐ趴刂破鳎缓笊蟼鞯絇C。下位機定期上載每個測量點的溫度數(shù)據(jù),并定期更新內存中的數(shù)據(jù)。其中,由于外部或儀器質量問題而引起的周跳對準確觀測產(chǎn)生嚴重影響,因為在處理數(shù)據(jù)時,它們通常少于10周,因此,可以使用關聯(lián)的軟件來解決小的循環(huán)跳躍問題并擴大循環(huán)滑移值。在測量過程中,由于存在接地電位差,并且熱電偶負極的電阻比接地電阻大得多,因此電流直接連接到熱電偶測量環(huán)路,并且在熱電偶負極的熱電偶上會疊加一個額外的壓降以進行測量。發(fā)生異常時,會產(chǎn)生較大的誤差值,因此DCS顯示值比實際溫度低。
六、實驗與分析
該系統(tǒng)主要用作子系統(tǒng),以在正?;驕y試期間監(jiān)視相關工作條件參數(shù)的變化。實時讀取串口采集模塊的全局變量,并實時顯示在界面上,以便操作人員或監(jiān)控人員在進行相應的處理后及時進行分析。為了監(jiān)視發(fā)電機線圈、軸承等的溫度而進行的實驗,鉑電阻傳感器由TPE橡膠包裹制成,經(jīng)過高溫處理后,三根引線也以相同的方式處理。在發(fā)電機定子的三相繞組內部,每相內置兩個三線溫度傳感器Pt100,以監(jiān)視繞組溫度。
在本實驗中,對發(fā)電機廠生產(chǎn)的發(fā)電機進行了測試,表1列出了一些監(jiān)測溫度參量變化值。在表1中,當發(fā)電機組正常運行時,繞組的A相測量溫度在65℃~75℃之間,低于警報值(發(fā)電機繞組絕緣為F級);繞組B相的溫度在55℃~76℃之間,低于報警值,繞組C相的溫度在68℃~77℃之間,也低于報警值,滿足測試條件的參數(shù)值要求參數(shù)設置模塊實現(xiàn)各種監(jiān)控狀態(tài)量的報警參數(shù)設置,并連接數(shù)據(jù)庫模塊,將相應的設置值存儲在參數(shù)表中,以備將來參考。事件歷史模塊主要調用數(shù)據(jù)庫不同時期的歷史數(shù)據(jù)和趨勢分析,以實現(xiàn)對每個狀態(tài)信號報警事件的查詢和顯示。
七、安科瑞測溫產(chǎn)品介紹
a.電池供電型無線溫度傳感器
安裝于發(fā)熱部位,采集溫度量并通過無線方式傳輸?shù)膫鞲衅鳌?/div>
目前無線溫度傳感器有三款:
b.CT感應取電無線溫度傳感器
安裝于斷路器觸頭、母排、電纜搭接點等大電流處,采集溫度量并通過無線方式傳輸?shù)膫鞲衅鳌?/div>
目前無線溫度傳感器有兩款:
安科瑞無線測溫就地顯示配置:
ASD300/320智能操控裝置可連接12路無線溫度傳感器,ARTM-Pn無線測溫裝置可連接18路無線溫度傳感器,無源(CT取電)方式為ATE300(捆綁式安裝),有源(電池供電)方式為ATE100(螺栓式安裝,主要用于電纜/銅排等螺絲固定的搭接點)和ATE200(表帶式,主要用于斷路器觸頭等接點捆綁安裝,因安裝較ATE100更方便,電纜/銅排等搭接點也常選用)。
無線測溫帶操顯功能(就地顯示)
Acrel-2000T/B無線測溫壁掛式監(jiān)控設備,內存4G,硬盤128G,以太網(wǎng)口,顯示器12寸,分辨率800*600,可選Web平臺/App服務器,柜體尺寸480*420*200(單位mm),配置IPAD,安裝ACREL-2000/T軟件。就地實時顯示溫度分布以及報警等詳細參數(shù)。
無線測溫采集設備配置方案
八、結束語
為了在發(fā)電機組中應用發(fā)電機溫度監(jiān)控,本文考慮了現(xiàn)場環(huán)境、技術要求、電磁兼容性、電路功耗等因素,以及設計計劃、設備選擇、硬件電路設計和生產(chǎn)、微控制器程序設計和調試。對無線溫度監(jiān)測系統(tǒng)的配置和設計的研究就是這樣的例子,并且常規(guī)溫度監(jiān)測系統(tǒng)原本不可能發(fā)生的許多問題正在被更方便地解決。數(shù)據(jù)處理和分析是通過上位機實現(xiàn)的,上位機軟件采用了可視化界面,使操作員操作起來更加直觀。在編程軟件的控制下,在PC的主軟件界面觸發(fā)命令按鈕,以將命令發(fā)送到接收器,接收到部分處理指令后,該指令將發(fā)送到下位機以選擇通道。溫度收集模塊在接收到命令后收集溫度并以無線方式收集溫度,將溫度數(shù)據(jù)發(fā)送到接收器。通過該系統(tǒng)能夠大大地提高工人的工作效率并基于ZigBee的收集模塊可以在工作條件下實時收集和顯示必要的更改。
【參考文獻】
[1]付興強,無線監(jiān)控系統(tǒng)在電廠的應用
[2]蔣 燕,發(fā)電機無線測溫與監(jiān)控系統(tǒng)研究
[3]安科瑞企業(yè)微電網(wǎng)設計與應用手冊2020.06版